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Abstract-A porous structure with partial heating and evaporation on the upper surface is studied analyti- 
cally. The liquid pressure and velocities are obtained by solving a Laplace-type equation for the porous 
structure. A perturbation method is applied for the temperature distribution with higher heat inputs. 
which consists of zeroth-order solution and a temperature correction. For the temperature correction, an 
approximate solution is derived using an integral formulation. The analytical solution obtained is useful 

for the evaporator performance and design of capillary pumped loops. 

in 

INTRODUCTION 

A CAPILLARY porous structure with partial heating 
and evaporation on the upper surface is shown in Fig. 
1. The entire porous structure is saturated with liquid 
from the bottom (_v = 0), which is connected to a pool 

for the liquid supply. Heat is applied over part of the 
upper surface (0 < .X < L,r) which is impermeable to 
the fluid. The rest of the upper surface (L,, < x < L,,) 
exposes liquid in the pores of the capillary structure 
to the vapor space above. Heat is transferred from 

the upper surface (0 < x < &) to the liquid-vapor 
interface where evaporation takes place. The side 

walls (x = 0 and L,) are adiabatic and impermeable. 
The liquid is drawn from the bottom of the porous 
structure and flows to the liquid-vapor interface due 
to evaporation. 

The porous structure described above is directly 
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Porous 
Structure 

FIG. I. Porous structure with partial heating and evaporation 
on the upper surface. 

related to the evaporator of capillary pumped loops 
(CPL). A capillary pumped loop has the advantage of 

transporting large amounts of heat over long distances 

[I-3]. A commonly encountered problem is that 

sufficient capillary pressures cannot be developed at 

the evaporator during operation, which is needed to 

circulate the working fluid through the CPL. As a 

result, a two-phase accumulator or mechanical pump 

is often needed to assist the CPL operation. One of the 

major causes of this problem is the boiling limitation 

which occurs in the porous structure of the evap- 

orator. Due to the special geometry of the CPL evap- 
orator, the boiling limitation is more likely to occur 

than in conventional heat pipes, which largely depends 

on the temperature distribution in the porous wick, 

especially at the wick/cover-plate interface. Also. it is 

important to calculate the pressure drop in the wick 

structure for the capillary limit consideration. 

Liquid flow and heat transfer in the CPL is a very 
complicated process which generally requires numeri- 

cal simulations. Although the numerical simulation 

has the advantages of being comprehensive and 
general, the numerical coding is time-consuming and 

the application of the numerical results is sometimes 

difficult. On the other hand, a simple, approximate 
analytical solution is ready to use and is more con- 

venient for the CPL design. For this reason, approxi- 

mate analytical solutions are obtained in the present 

paper for the temperature distribution in the porous 
structure. With this information, the boiling limitation 
for the CPL can be determined. For most cases, a two- 
dimensional model is appropriate for the temperature 
distribution in the porous wick at the steady state. 
Also, the temperature drop in the cover plate can be 
neglected due to its high thermal conductivity. Due to 
symmetry, a segment of the flat-plate evaporator can 
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NOMENCLArURE 

l/t constant in cyuation (3X) I liquid velocity in y direction [m s ‘1 
02 constant in equation (38) 1’ ’ dimensionless velocity in J’ direction 

(‘,’ specific heat [J kg ’ K ‘1 [~‘~~‘inl 
/I& latent heat of evaporation [J kg ‘] 

,\’ , 
- I coordinates [m] 

k thertnal conductivity [W m I K ‘] .u2,_ri dimensjonIess coordinates. 
iceil- effective thermal conductivity, (A?L,)i(RsPr). (_l’,:L,):‘(REPI.). 

equation (6) [W m ’ K ‘1 
K wick permeability [m’l 

L, total length in .Y direction [mJ Greek symbols 

L, total length in !’ direction [mJ 1 thermal diffusivity [m’ s-- ‘1 

L,T heating length on the upper surface [ml 1‘1 liquid kinematic viscosity 
tir, vapor mass flux due to evaporation {kg [m’s ‘1 

m ?s ‘f P density [kg m ‘1 

P liquid pressure [N m ‘1 cp porosity. 
Pr Prandtl number. v,/x,,, 

Y heat flux [W m “J 
Re Reynolds number, r,,L,;v, Subscripts 
s integral in equation (40) eff effective 
s source term in equation (37) i wick-vapor interface or initial 
T temperature [K] condition 

r1 temperature correction [K] in inlet 

T0 zeroth-order temperature [K] I liquid working fluid in the porous 
ei r temperature difference, T- Ti,, [K] structure 
U liquid veiocity in s direction [m s ‘1 Out outlet 
11’ d~n~ensionless velocity in I direction S solid matrix 

t2+.,,,1 V vapor. 

be studied. Therefore. a flat-plate CPL evaporator can 
be simplified to the situation shown in Fig. 1. 

MATHEMATICAL FORMU~TION 

For the liquid flow in the porous structure, Darcy’s 
law is applied [4] : 

(2) 

where K is the wick permeability, and u and I‘ are 
the area-averaged fluid velocities. The corresponding 
continuity equation is 

* 
$+$O. (3) 

The energy equation for the porous wick is 

The effective thermal diffusivity x,~ is defined as 

z,il’ = k&i&(.,, (5) 

where 

which is an aggregate property of the fluid-saturated 
porous medium. (p,cp,) is a property of the fluid only, 
and cp is the wick porosity. In the above formulation. 
it is assumed that the porous structure is homogeneous 
and isotropic. It is also assumed that the solid matrix 
is in local thermal equilibrium with the fluid filling the 
pores, and the order of the local Reynolds number 
based on the average velocity and K” does not exceed 
unity. 

The boundary conditions are : 

.s = 0 and s = L, : 

ANALYTICAL SOLUTION OF THE LIQUID FLOW 

Combining equations (l)-(3), a Laplace-type eyua- 
tion is obtained [4] : 



with boundary conditions : 

x = 0 and x = L, : 

J‘=o: 

ap -_=O 

?x (12) 

(13) 

y= L,.: 

8P 10 

8~ \- P,,,IK (L,, < x Q L,) 
(14) 

Equations (1 l)-(14) can be solved by the method of 
separation of variables [S]. The solution thus obtained 

is 

X 

.sinr+)cosE) 

ew 
[ 
-F(Lv-y) fexp 

1 1 [ -?(L,,+J’) Y 1 
X 

1 -exp 
[ 1 -2m$ L,, 

I 

By making an energy balance over the whole porous 
structure, we have 

= t’wtph,, (L,-L,r)+c,,t~i~~~T~,ut (Lx-L,,) (21) 

where To,, is the average temperature at the liquid-- 
vapor interface. Considering the mass balance 

t’,“PIL, = c’,“tpI(LY-LL,f) (22) 

and substituting equation (22) into equation (21), we 

have 

where C, is an arbitrary constant. Due to the bound- 

ary conditions given in equations (12)-(14), the pres- 
sure gradients are meaningful, but the absolute value 
of the pressure is not meaningful. The velocities are 
obtained by combining equations (l), (2), and (15). 

L’ = U,” - ,,!,%sin (I+)cos EX) 

ew 
[ 
- y(Lv-y) -exp - y(L,,+y) \ I L Y 1 

X 

1 -exp 
[ 1 -2FL, 

1 

+GPK,,L, (To,, - Tm). 

The sensible heat term in the above equation is 
much smaller than the latent heat term, and can be 

(16) neglected. 

ew 
X- 

ANALYTICAL SOLUTION OF THE ENERGY 

EQUATION 

The energy equation as well as the boundary con- 
ditions are given by equations (4)-( 10). By intro- 
ducing the following parameters, 
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4L.Y .y+ =- Y/L, 
Repr’ )‘+ =- RePr ’ 

,I+ 2 
L‘,,, 

t>+ =L; , T+ = T-T,,, 
Cl” 

GlLY 
Re = - , Pr=A 

Kff VI 
(18) 

the energy equation is transformed into 

$ (RePr)’ 
‘_ i 

(19) 

From equation (18), the parameter RePr is a com- 
bination of properties of the working fluid and the 
wick structure, which can be expressed as 

uin L.\ “I 
Repr = __ - = 

PIL'," LJ,l 
\‘I ‘xdr k 

(20) 
et-f 



Therefore. 

P,l’mL,(.pl 
RePr=p 

k,,, 

= i (.p,i(hlpkuff). (24) 

As a first approximation, neglect the heat flux at r = 0. 

The parameter Re Pr is usually very small. For a 
CPL evaporator with heat input and thermal proper- 

ties of q,,, = IO4 W m ~‘. L,, = 0.5 mm, cp, = 2.0 x 10” 

J kg ’ K -‘, 11~~ = 2.0 x 10” J kg ‘, and keff = 4.0 W 
mm’ K ‘, Ret? is on the order of 10 ‘. Therefore, for 
a small or moderate heat input, the term on the right- 
hand side of equation (19) can 
RePr = 0, equation (19) becomes 

be neglected. For 

0 

with boundary conditions 

.Y+ = Oand L,+ : 

?“ =o: 

7-i = 0 

y+ = L,+ and 0 G S+ G L$: 

c’T,T L, Re Pr (I~,, p= 
?j‘+ k eff 

y+=L:andL’<s+<L:: \I 

?T: L, Re Pr qo,,, ~= _ 
i;y+ kc, 

(26) 

(27) 

(28) 

(29) 

(30) 

The solution to the above equation and boundary 
conditions is obtained by the method of separation of 
variables. 

W [- ‘;(L: -.l” )] -exp [- II”(L,f +.v’ )_1 

x ~._ 

i 
nut 

I+exp -2-L ,+ / >i 
\ L\ / 

(31) 

For Re Pr # 0, an exact analytical solution is not 
available. Since RePr is a small number, a per- 
turbation method can be used [6]. The solution for 

RePr # 0 can be expressed as 

T+(.u’.~.+) = T,:(.Y*,J.’ )+(RPP$T:(.Y’,J+) 

(32) 

where T: (x ’ . y’) is the solution with RePr = 0, and 
TT(s‘, _v-) is the first-order solution associated with 

(RePr)‘. The terms with higher order of Re Pr have 
been neglected due to the very small value of Re Pr. 

Substituting equation (32) into equation (19), and 
collecting the terms associated with (RePr)‘, we have 

with boundary conditions 

s+ =Oand.u+ = L:: 

,17-t 

?‘ + =o: 

T: =0 (35) 

?’ + = L: : 

(36) 

Since the solutions for T; and the velocities U+ and 
zl+ have been already obtained, the term on the right- 
hand side of equation (33) is a source term. 

1 + 

S(.Y+ ,y’) = u+ ( 1’+ 3, ( To 
is+ ij%f 

(37) 

However, this source term is a very complex function 
of X+ and J’+ due to the multiplication of the infinite 

series for T,:, M’, and I.+. In general, numerical com- 
putations are needed to solve the equation. Since the 
equation is basically a heat-conduction type equation, 
minimal numerical efforts are required for this prob- 
lem. However, since the primary objective of this study 
is to obtain analytical closed-form solutions, an 
approximate method is applied. The solution for T, + 
is approximated by the following relation. 

(38) 
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The above equation satisfies the boundary conditions 
for T,‘, equations (34)-(36). a, and az are constants 
to be determined. In this study, the integral for- 
mulation is applied to determine the constants. The 
differential equation (33) is integrated over the porous 
structure. 

L: L; 
3 .lX (39) 

0 0 

Using the continuity equation (3), and the boundary 
conditions for u+, t’+, and T,+ (equations (7), (9), 
(lo), and (28)), the integral source term on the right- 
hand side of equation (39) is 

= c’ (x+,L:) Tof(+u+,L,+)ds+ 

= - c&, 

, 

For the left-hand side of equation (39), applying 
boundary conditions (34)-(36) gives 

dx+. (41) 
y+ -0 

Combining equations (38)-(41), a, is obtained as 

2L:_ 8 
a, = _-AS_-a,, 

3L: 15 (42) 

Another condition used to determine the constants 
is that, at some specific points, the differential equa- 
tion is satisfied. Since the highest temperature will 
occur at the left upper corner of the porous structure, 
the approximate relation is imposed to satisfy the 
differential governing equation at that point. 

a= TT ii2 T+ ’ 1 aT,t S-2 ___ 
a.x+z + i?,,+2 

-=u+auf+l~+.‘, 
I 3.l 

at,y+ = Oand y+ = L+ 1 * (43) 

Substituting equation (38) into equation (43) results 
in 

n, = -(I+;$+ 

From equations (42) and (44), 11, and a2 are 

(4) 

(4oLy +3oL:L:“)s 
n, = - 

21L:%6OL’L,I’ 
(45) 

lOL;t-L:S .- 
u2 = 7L;?+2OL:“ (46) 

Therefore. 

X 

i 

(4OL.T 3 + 3oq L.T2)S 
.~_____-- 

21L:’ +6OL: L:’ 

The above approximate relation is not the only one 
that may be derived for equations (33)-(36). In fact, 
for a particular problem, one approximation may be 
more convenient than another. The choice depends 
on experience, the accuracy required in the solution, 
and the complexity of the problem. The above solu- 
tion can be improved at the cost of an involved analy- 
sis. However, since T: is associated with (Re Pu)*, its 
contribution to T” is usually small, so an approximate 
relation with reasonable accuracy is acceptable. 

RESULTS AND DISCUSSION 

Figure 2 presents the dimensionless liquid velocity 
vectors in the porous structure, which were obtained 
analytically from equations (16) and (17). The 
geometry parameters and thermal properties for this 
case are : L, = 0.75 mm, L,. = 0.75 mm, L,,. = 0.5 mm, 
keK= 4 W me-’ K’, c,,=2xlO’ J kg-’ K-‘, 
k,,=2x105Jkg-‘andq,,=2x104Wm ‘.Asafirst 
approximation, the heat flux at .V = 0 is neglected, and 
equation (25) is used in the calculation of RePr. This 
makes both dimensionless parameters .Y+ and x+ 
nearly 40. The liquid flows vertically into the porous 
wick structure at y* = 0, and remains nearly one- 
dimensional until reaching the middle section of the 
porous structure. The liquid flow in the region 
o<x+ <L1;:, changes direction due to the upper 
impe~eable boundary and moves toward the liquid- 
vapor interface region (Ls < s+ < L:). 



In order to check the accuracy of the approximate 
solution for the temperature correction 2’:. equation 
(33) and the boundary conditions (34).(36) were 
solved numerically using the control-volume finite 
difference approach I?‘]. Numerical and approximate 
solutions for the tenlper~ture correction T? at s’ = 0 
and 4:’ = 0.515: are compared in Fig. 3. The agree- 
ment between the two solutions is generally good. 
In addition. both numerical and a~~roxi~~ate tem- 
perature correction results were substituted into equa- 
tion (32), and the tem~er~~iure solutions for the porous 
structure thus obtained are compared in Fig. 4. As 
can be seen, both solutions agree very well, and the 
discrepancy between the two solutions is much smaller 
than that of solutions for T:. Since RrPr is a very 
small number, little error from the approximate solu- 
tion was carried through to the ftnal solution for T’ . 

60 / I 
0 AvQroximate. X* = 0 

I 

A Numerical, Y+ = 0 _ 
&r_o.xig&e, e p,?g 

Frc;. 3. Comparison of numerical and approximate tem- 
perature corrections at .Y’ = 0 and 3.’ = O..Q_’ 

l/Out in the analytical solution is calculated to be 

Y 0111 = yi,,L,,-:‘(I,,--&,) due to the neglection of heat 
Bux at J / = 0. 

Figure S shows temperature contours for T’ in the 
wick structure. The lnaxinluln tenlperature occurs at 
the upper left-hand corner, and gradually decreases to 
the minimum at the upper right-hand corner. Figure 6 
shows analytical T and T,; at .Y ’ -= 0 for different 
heat inputs cfi;,. Roth temperatures increase sig- 
niticantly with higher heat input. Also, T’ departs 
from T,; when the heat input is high. Since the liquid 
velocity in the porous structure is directly related to 
the heat input, a higher heat flux means a higher 
liquid flow velocity. 7$’ differs from Ti in that the 
convective terms are neglected in the governing equa- 
tion for T,/ A higher T-+ than T; is due to the liquid 
Row in the porous structure. For the present porous 

z i 

-1 i 1 

0 b 16 24 & ‘to 

x+, y+ 

FE. 4. Comparison between numerical and approximate 
temperature solutions at s _ = 0 and j’ ’ = 0.5L.T 
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FIG. 5. T+ isotherms in the porous wick structure. 

b 0.2 0:4 0:6 0.8 1 

y+/q 

FIG. 6. Analytical T+ and T,: at xi = 0 for different y,” 

structure, liquid flows upward while heat flows down- 
ward in the region close to .Y+ = 0. The net effect of 
these two processes is to increase the temperature in 
this region. Figure 7 shows analytical solutions of T+ 
and T$ at J+ = L: for the same heat fluxes examined 

-15b 1 

X+/L: 

FIG. 7. Analytical T+ and T,,+ at yi = L: for different q,,,. 

LO 

in Fig. 6. The temperature T+ with convective terms 
is also consistently higher than Tz without convective 

terms. However, the absolute value of T+ in the 
region L:. < x+ < L: is smaller than that of T:. In 

this region, heat fluxes begin to change direction, and 
eventually flow in the same direction as the liquid 
velocity. As a result, the temperature difference 
between the inlet and the evaporating liquid-vapor 
interface is reduced. 

Figure 8 shows the analytical solutions of the tem- 
perature T+ at xi = 0 and J+ = L: for different 
effective thermal conductivities. The effective thermal 
conductivity has a pronounced effect on the tem- 
perature distributions in both directions. As the effec- 
tive thermal conductivity is reduced, the absolute 
value of T’ at the upper surface increases sharply. 

For the previous results, the working fluid was con- 

-10 I 
I / I 

0 0.2 0.4 0.6 0.0 1 

x+/L;, y+/L; 

FIG. 8. Analytical T' at y+ = L: and Y+ = 0 for different 
effective thermal conductivities (4,. = 2 x IO4 W m ‘). 



c Freon-113 
4 Ammonia 

0 0.2 0.4 0.6 0.6 1 
Y+/L; 

Fro. 9. Analytical T+ at sL = 0 for different working fluids 
(l/,,> = ItIC w m ‘) 

sidered to be Freon-l 13. Figure 9 shows analytical 
solutions of T+ at s+ = 0 for different working fluids 

with qln = 10’ W m ‘. The temperature with Freon- 

113 is relatively higher than that with ammonia or 
water. For Freon-l 13, the latent heat of evaporation 
h, is on the order of 10’ J kg II while those of 
ammonia and water are on the order of 10” J kg ‘. 

The liquid mass flow rate is directly related to the 
latent heat, tiq = q,,,/htg. With the same heat input, the 
liquid mass flow rate for Freon-l 13 in the porous 
structure is considerably higher than that for 
ammonia or water. Therefore, the temperature T+ for 
Freon- 113 is accordingly higher. 

In the above calculations, the heat flux at _r* = 0 
has been neglected. In order to validate this assump- 
tion, equation (24) is used to calculate RePr, in which 
the heat flux at _J“ = 0, q. = -k,&f?T/Sy)I, =,,, is 
obtained by iteration. q,, is first calculated using the 
solution based on the assumption q, = 0. If / q. 1 is 
zero, the assumption is valid. If / q. 1 # 0, equation 
(24) is used to calculate RePr, and ~~~~~~~ is calculated 
by the energy balance 

(/our = ~- (L, _ L,,) (48) 

An analytical solution can be obtained based on the 
values of RePr and q,,,, given. Then, a new q. based 
on this solution is obtained. If the relative difference 

2 , 1 

FIG. 10. Comparison of solutions with and without the 
assumption of y0 = 0 for different geometric parameters at 

J+ = t:. 

2 

I _k\\. 
0 \ \>_ -- 

; 
-l- 

-2 - 0 LZ,/ L+;o>q+ II 
A G& = 0.66 ‘I i 

--- 1. 
-3 - + L&/L+ __I-.__- 0.6 = 

-4M 1 

X+/L; 

FIG. I 1. Analytical solutions of T at J’ ’ = L,‘. for different 
geometric parameters (Q,, = IO W m ‘) 

between the new q. and previous q, is greater than 
10 ‘, another iteration is made until the criterion is 
satisfied. Only a very few iterations are needed for 

the above procedure, and analytical solutions thus 
obtained are presented in Fig. 10 at J” = L:~ with 
different L: /L,’ , and compared with the cor- 
responding solutions with the assumption of q,, = 0. 

For larger values of L:;L: , the difference between 
the solutions with and without q, = 0 is negligibly 
small. For small values of L: IL:, however, large 
errors may result for the solution based on the 

assumption q, = 0. For the case of L,+;‘L; = 0.6. 

more than half of the total heat input is transferred out 
of the porous structure through the surface t’- = 0. 

Figure 11 presents analytical solutions of T’ at 

.r+ = L: from different geometric parameters. The 
total heat input Q,,, = ql,L,f is held constant at IO W 
m ‘, L, is fixed at 0.75 mm. and L:/L,+ is kept con- 
stant at 1.5. Upon varying LJj./LJ~ from 0.5 to 0.8. it 
can be seen that the temperature distribution is some- 
what sensitive to this parameter, and a small L:-,‘L: 

results in a higher temperature at .Y’ = 0. A smaller 
L;:./L,’ in this case means a small L+ Since the total 

heat input Q,,, is kept constant, a small L,I means a 
higher heat flux in the region 0 < .Y c L,,. Therefore, 
the temperature at I = 0 is accordingly higher. 

CONCLUSIONS 

Analytical solutions for liquid pressures, velocities 
and temperature in the porous structure were 
obtained. The approximate solution for the tem- 
perature correction was compared with the cor- 
responding numerical results with reasonable agree- 
ment. The accuracy of the analytical temperature 
relation obtained was also examined, and it was shown 
that the temperature field in the porous structure can 
be accurately predicted. A parametric study for the 
porous structure was then presented. and the con- 
dition under which the assumption q. = 0 can be made 
was given. For the thermal design of capillary pumped 
loops, the boiling limit is one of the primary concerns, 
which is largely dependent on the highest temperature 
at the upper left-hand corner of the wick structure. 
Also, for a given wick structure and working condi- 
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tions, it is desirable to know the pressure drop over 
the structure for the capillary limit consideration. The 
analytical relations obtained in this paper provide a 
useful tool to deal with these problems. 
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